
Professional Web
Development Tools

Christian Heilmann
IPC Media Brownbag, London, England May 2009

Almost every web site is
broken.

If you look around the web you will find that almost every site is broken in one way or another. This
starts with small display glitches and ends with the sites being inaccessible or not working for users
out there.

This is bad.

This is really bad. It hurts the web as a media. We re-invent the web every year as we just cannot
seem to get it to work for us.

Unhappy
visitors.

Broken web sites lead to unhappy visitors. The real problem there is that unhappy visitors do not
complain to the people who could fix the issues. Most visitors either think they've done something
wrong or just try to find another site that offers the same content and works. Both of these visitors
will never come back. Other visitors complain but get stuck in help desks and never get their
problem fixed as it is highly unlikely to ever reach the developers who could fix them.

Unhappy
developers.

It doesn't reach the developers as they are too busy with building new functionality and other sites.
If we don't build new things all the time we are neither happy developers nor seen as efficient
employers. Fixing things isn't sexy.

Unhappy clients.

This leads to unhappy clients. If a client realizes something doesn't work on the site they paid good
money for they want it fixed, regardless of how fringe the problem is and if it only shows up on their
machine with their (most of the time outdated) setup.

Reasons

There are many reasons for the broken web, and nearly all of them are our own fault or based on
misconceptions.

Lack of communication

Probably the biggest problem of web development is that the different parties involved do not talk to
each other or know each others tasks. Developers think they know more than designers, designers
think developers are not creative enough in using the arsenal at their hands and product managers
see the brand more than the media and are oblivious to the technical boundaries and freedoms the
internet gives us. Furthermore we all have our deadlines, deliveries and reports to make and write
which takes up too much of our time.

Development environment

Web development has the most terrible and undefined environment ever. There are thousands of
browser configurations and versions, each of them failing in different ways. There is a lack of good
error reporting, difference in server configurations, connection issues... you name it. Our
development is hit and miss and we fix more bugs than we write code.

Piecemeal development

As web developers we always try to build small solutions that solve a problem we have right now. We
don't really consider that all things on a site and across sites should work smoothly together. We've
been disappointed so many times that we don't really believe in that.

Lack of handover and
documentation

The piecemeal development also means we don't really document or hand something over. As the
next developer is most likely as inclined as we are to build something new (as it surely will be much
better than the crud we are asked to maintain) there is no point in that.

Interface to functionality

The biggest issue is that we start with the interface and the cool effect and then work our way down
to what the user needs to achieve. We tend to forget very fast that not everybody has the same
experience or could benefit from the great shiny interface we want to build. There is a skeleton
under every web application and if that skeleton is weak it will break no matter how pretty and shiny
we make it.

Solutions

There are solutions for all these issues.

Back to Basics

The first thing to think about is going back to basics when it comes to development. How does the
web work, what is the most basic way of reaching a certain goal.

This is a search box with several options. It used JavaScript to change the form’s action when any of
the links were clicked.

Task: Define type of search, enter
search term,submit form.

There was no need for JavaScript - all we needed was a radio button group and doing the forking on
the backend. Notice that the fieldset, the options and the search button form a logical sentence.
This is very important for accessibility.

The hardest interface to build as a web developer. Looks like a data table but could have shows that
are one minute long! This would mean the table has to have 180 columns and use colspan on every
table cell.

Analyse what data
you display, and find
the easiest way to
show it.

Then make it look the
way you want it to.

The information the data displays is much easier shown as headlines and ordered lists. CSS does
the rest.

Build things people want and
know how to use.

http://developer.yahoo.com/ypatterns

Here is where Yahoo offers their findings of user testing with real end users. There is nothing that
can replace this knowledge and it is normally very expensive to come by. Before you even think
about building an own interface to solve a problem users have to solve, give this a whirl.

http://developer.yahoo.com/ypatterns/pattern.php?pattern=ratinganobject
http://developer.yahoo.com/ypatterns/pattern.php?pattern=ratinganobject

Using technology for good

Screenshots of uk.video.yahoo.com with and
without JavaScript

http://uk.video.yahoo.com/

Flash video players are to date the best way to show video. However, they have no reliable keyboard
control.

http://uk.video.yahoo.com
http://uk.video.yahoo.com

By providing buttons that work in HTML and control the video via an API you can make it accessible
to all.

Aiming for excellence.

http://finance.yahoo.com/currency-converter?
u#from=USD;to=EUR;amt=1

This is the new Yahoo currency converter. It is an amazing piece of web development. It works for
all users (including screen reader users) and makes it easy to convert currencies.

http://finance.yahoo.com/currency-converter?u#from=USD;to=EUR;amt=1
http://finance.yahoo.com/currency-converter?u#from=USD;to=EUR;amt=1
http://finance.yahoo.com/currency-converter?u#from=USD;to=EUR;amt=1
http://finance.yahoo.com/currency-converter?u#from=USD;to=EUR;amt=1

http://developer.yahoo.net/blog/archives/
2009/01/accessible_converter.html

Here we explained in detail how it works and the approach we took in developing it.

http://developer.yahoo.net/blog/archives/2009/01/accessible_converter.html
http://developer.yahoo.net/blog/archives/2009/01/accessible_converter.html
http://developer.yahoo.net/blog/archives/2009/01/accessible_converter.html
http://developer.yahoo.net/blog/archives/2009/01/accessible_converter.html

Removing browsers

The biggest step to professional development and keeping our sanity is to get the random element
of browsers out of the equation. You cannot support all the browsers in the world and neither
should you.

http://developer.yahoo.com/yui/articles/gbs/
The graded browser support is a framework to define which browsers you test for and get the full
experience. Unknown browsers only get what works in them - no JavaScript and even more obscure
browsers get no CSS either.

http://developer.yahoo.com/yui/articles/gbs/
http://developer.yahoo.com/yui/articles/gbs/

Making browsers behave.

http://developer.yahoo.com/yui/

Libraries have one job: make browsers work. Support is the most random thing in our world as web
developers therefore it makes a lot of sense to put all the dirty hacking and fixing of wrong browser
behaviour into libraries. YUI is what Yahoo built and uses exactly for that purpose.

http://developer.yahoo.com/yui/
http://developer.yahoo.com/yui/

Making browsers behave.

http://developer.yahoo.com/yui/reset/
First issue is that every browser has an internal style sheet that renders HTML. All of them are
different which makes it impossible to develop a reliable look and feel across browsers. YUI Reset
works around that.

http://developer.yahoo.com/yui/reset/
http://developer.yahoo.com/yui/reset/

There is no such thing as an
“unstyled page”.

ctrl+z

http://developer.yahoo.com/yui/fonts/
The same applies to typography. By using the YUI fonts CSS you reset the browser typography to
allow you to define pixel sizes as percentages, thus having control and allowing users to resize the
fonts.

http://developer.yahoo.com/yui/fonts/
http://developer.yahoo.com/yui/fonts/

http://developer.yahoo.com/yui/grids/
The CSS grids allow you to create multi column layouts that work across all the A-level browsers
easily and reliably. Source order independence comes free, too.

http://developer.yahoo.com/yui/fonts/
http://developer.yahoo.com/yui/fonts/

http://developer.yahoo.com/yui/grids/builder/
If you are lazy, you can also use the grids builder, define your layout, hit the show code button and
get a copy + paste HTML document. The CSS will come from our CDN, which means it gets
delivered to your customers from a computer near them geographically.

http://developer.yahoo.com/yui/grids/builder/
http://developer.yahoo.com/yui/grids/builder/

Doing one job at a time.

YUI does what we as developers would love to be able to do: concentrating on one task at a time.
Other than “catch-all” libraries, YUI is cut up into several components, each doing one thing. You
can mix and match them to your needs.

DOM access.

One of these components is YAHOO.util.Dom which gives you access to everything that happens in
the DOM and convenience methods around the more annoying things the W3C DOM API has.

http://yuiblog.com/blog/2008/06/25/autogrids

Using this I can write a script that shows the perfect YUI grid for every size of browser.

http://yuiblog.com/blog/2008/06/25/autogrids
http://yuiblog.com/blog/2008/06/25/autogrids

YAHOO.example.autoGrid = function(){
 var container = YAHOO.util.Dom.get('doc') ||
 YAHOO.util.Dom.get('doc2') ||
 YAHOO.util.Dom.get('doc4') ||
 YAHOO.util.Dom.get('doc3') ||
 YAHOO.util.Dom.get('doc-custom');
 if(container){
 var sidebar = null;
 var classes = container.className;
 if(classes.match(/yui-t[1-3]|yui-left/)){
 var sidebar = 'left';
 }
 if(classes.match(/yui-t[4-6]|yui-right/)){
 var sidebar = 'right';
 }
 function switchGrid(){
 var currentWidth = YAHOO.util.Dom.getViewportWidth();

 if(currentWidth > 950){
 container.id = 'doc2';
 if(sidebar){
 container.className = sidebar === 'left'
 ? 'yui-t3' : 'yui-t6';
 }
 }
 if(currentWidth < 950){
 container.id = 'doc';
 if(sidebar){
 container.className = sidebar === 'left'
 ? 'yui-t2' : 'yui-t5';
 }
 }
 if(currentWidth < 760){
 container.id = 'doc3';
 if(sidebar){
 container.className = sidebar === 'left'
 ? 'yui-t1' : 'yui-t4';
 }
 }

 if(currentWidth < 600){
 container.id = 'doc3';
 container.className = '';
 }
 };
 switchGrid();
 function throttle(method, scope) {
 clearTimeout(method._tId);
 method._tId= setTimeout(function(){
 method.call(scope);
 }, 100);
 };
 YAHOO.util.Event.on(window,'resize',function(){
 throttle(YAHOO.example.autoGrid.switchGrid,window);
 });

 };
 return {
 switchGrid:switchGrid
 };
}();

Predicting issues and fixing
them.

One thing you should do as a developer is being paranoid about things breaking. You should be
able to see what can go wrong and set traps for it not to happen.

position:fixed is sexy!

Positioning elements fixed can be very cool. Say for example you have a long document but you
want to show the navigation next to regardless of how far down the page you scrolled. Another cool
use would be a comments field that allows you to copy and paste quotes from the document.

Positioning the navigation as fixed makes it always visible on the page.

However if the browser window is too small there is no way to reach the elements below.

 var YD = YAHOO.util.Dom;
 YAHOO.util.Event.onDOMReady(toggleMenu);
 YAHOO.util.Event.on(window,'resize',function(){
 toggleMenu();
 });
 function toggleMenu(){
 var sidebar = YD.getRegion('sb');
 var browser = YD.getViewportHeight();
 YD.setStyle('sb','position',
 browser < sidebar.bottom ? 'static' : 'fixed'
);
 }

This small script fixes this problem. Using getRegion I can get the size of any element on the page
and getViewportHeight() gives me the available space. If there is more space than needed, fixed can
be applied.

Once fixed, let’s re-use.

http://ui.jquery.com/

http://ui.jquery.com

Using the YUI components we build all kind of widgets based on the design patterns.

Using these free widgets you can re-build yahoo mail yourself.

Re-use means the ability to
style differently.

http://developer.yahoo.com/yui/articles/skinning/

All the widgets are style-able using CSS. You don’t need to know JavaScript or change their code to
make them look completely different.

http://developer.yahoo.com/yui/articles/skinning/
http://developer.yahoo.com/yui/articles/skinning/

Document your work.

http://developer.yahoo.com/yui/docs/

The YUI comes with extensive documentation, both created from comments in the code (JavaDoc
style) and step-by-step tutorials. The system that generates the docs from the source code is also
available as open source.

http://developer.yahoo.com/yui/docs/
http://developer.yahoo.com/yui/docs/

Learn by example.

http://developer.yahoo.com/yui/examples/
YUI comes with over 300 copy and paste examples of how to use the different components and
widgets. As this is how most developers work, we realized that this is a very important part of our
success.

http://developer.yahoo.com/yui/examples/
http://developer.yahoo.com/yui/examples/

Allow for extension.

One very important part of any software is that it should allow for extension of functionality. Users
of the software package should never have to hack the core but instead create add-ons and plugins
to extend the basic functionality to what they want to achieve.

YUI uses custom events for all of this. This allows you to completely separate your own code from
the library. Instead of having to call library methods or call your functions from the library all you
need to do is to fire or subscribe to events.

	 //This is the first animation; this one will
	 //fire when the button is clicked.
	 var move = new YAHOO.util.Anim("animator", {
	 	 left: {from:0, to:75}
	 }, 1);	
	 //This is the second animation; it will fire
	 //when the first animation is complete.
	 var changeColor = new YAHOO.util.ColorAnim(
 "animator", { backgroundColor:
 {from:"#003366", to:"#ff0000"}
	 }, 1);
	 //Here's the chaining glue: We subscribe to the
	 //first animation's onComplete event, and in
	 //our handler we animate the second animation:
	 move.onComplete.subscribe(function() {
	 	 changeColor.animate();
	 });

	 //Here we set up our YUI Button and subcribe to
	 //its click event. When clicked, it will
	 //animate the first animation:
	 var start = new YAHOO.widget.Button("startAnim");
	 start.subscribe("click", function() {
	 	 //reset the color value to the start so that
	 	 //the animation can be run multiple times:
	 	 YAHOO.util.Dom.setStyle("animator",
 "backgroundColor",
 "#003366");
	 	 move.animate();
	 });

	 //You can also make use of the onStart and onTween
	 //custom events in Animation; here, we'll log all
	 //of changeColor's custom events and peek at their
	 //argument signatures:
	 changeColor.onStart.subscribe(function() {
	 	 YAHOO.log("changeColor animation is starting.",
 "info", "example");
	 });
	 changeColor.onTween.subscribe(function(s, o) {
	 	 YAHOO.log("changeColor onTween firing with these
 arguments: " + YAHOO.lang.dump(o),
 "info", "example");
	 });
	 changeColor.onComplete.subscribe(function(s, o) {
	 	 YAHOO.log("changeColor onComplete firing with
 these arguments: " + YAHOO.lang.dump(o),
 "info", "example");
	 });

Know what is happening.

Not every browser comes with a great debugging suite like FireBug or Opera’s Dragonfly. This is
why Yahoo comes with a logging control.

The logger allows you to debug in any browser that the YUI works in. In addition to this all the YUI
widgets and components are shipped as debug versions which report everything they do to the
logger. This gives you full control over what is happening and when.

Monitor performance.

The YUI profiler allows you to monitor JavaScript performance - even of non-YUI scripts.

Test before you write.

The same applies to the YUI Test suite. Using this you can apply test-driven development
methodologies to JavaScript development.

YUI3 is the new version of YUI, there are many speed and size improvements and we changed the
way YUI works significantly to make it more secure, performant and allows you to write much less
code to achieve your goal.

http://developer.yahoo.com/performance/

JavaScript performance is one thing, but in order to deliver really successful web sites there are
many tricks to apply to create happy end users. The exceptional performance section of the Yahoo
Developer Network has them all listed.

http://developer.yahoo.com/performance/
http://developer.yahoo.com/performance/

http://developer.yahoo.com/yslow/

YSlow - a Firefox extension allows you to test any web site against these tips and rules and you get
immediate, relevant information how to improve the performance of your site.

http://developer.yahoo.com/yslow/
http://developer.yahoo.com/yslow/

 Christian Heilmann

 http://icant.co.uk

 http://wait-till-i.com

 http://scriptingenabled.org

 http://twitter.com/codepo8

Thanks.
Any questions?

http://icant.co.uk
http://icant.co.uk
http://wait-till-i.com
http://wait-till-i.com
http://scriptingenabled.org
http://scriptingenabled.org
http://twitter.com/codepo8
http://twitter.com/codepo8

